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We study the reconstruction of an analytic function of several complex variables
by means of interpolating polynomials obtained from pieces of information given
by functionals of derivatives of the function. Several classical interpolation methods
are examples of our general problem. ' 1993 Academic Press. Inc

INTRODUCTION

Let us suppose that, by some process, you know m numerical pieces of
information on a function f; let us suppose also that you can construct a
polynomial (of degree less than or equal to m - 1) which, by the same
process, gives the same m informations: you have found an interpolating
polynomial (for the process in question) of the function!

When the m pieces of information are the values off at m distinct points,
the interpolating polynomial is only the Lagrange polynomial; when these
are the values of the m first derivatives off at the point x, then the polyno­
mial is the Talyor's expansion off at order m and at the point x.

The usual problem is: if the number of pieces of information grows larger
and larger, does the interpolating polynomial converge (uniformly) to the
function f?

In general no, but sometimes yes (as is well known for the above
examples) when f has appropriate analytic properties.

We study such a problem for functions of several complex variables and
a quite general process: the information is given by analytic functionals of
the derivatives of the function f; see Problem 1.1.

This work finds its origin essentially in the study by Gelfond [11] of the
general divided differences interpolation which already generalized previous
work of Gontcharoff; see [12]. In the multivariate context this procedure
has been studied by Cavaretta et at. for the definition, see [8], and by
Goodman and Sharma for the convergence; see [13]. The methods of
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POLYNOMIAL INTERPOLAnON 137

Gelfond, GontcharofT, Goodman, and Sharma may be followed quite
closely in our more general problem (except in Section 4).

Let us finally specify some notation. If Q is an open subset of 1[:",

then H(Q) denotes the space of analytic functions on Q endowed with the
topology of uniform convergence on compact subset of Q; H '(Q) is the
space of continuous linear forms on H(Q), whose elements are usually
called analytic functionals. If p is an analytic functional and f a function
depending on ¢, (, then J.1~(f) means p(f(., 0). Sometimes we will also
write (incorrectly) J.1(f(z)) for p(f), for example p(Z2) will mean p(z --> Z2).

C(a, b, ... ) denotes a constant depending on a, h, ..., but not always with
the same value.

I. INTERPOLATING POLYNOMIALS

Problem 1.1. Let Q be an open subset of 1[:11, rx' E H '(Q), i = 0 ... d,
f E H(Q), find a polynomial p(z) of degree ~ d such that

IPI = i and 0 ~ i ~ d, (1 )

where P= (PI' ..., Pn), IPI = I. Pi' DP = i)1/11/i)z;lt ... i)z::". Further, if p exists
does p(z) converge to f(z) when the number of rx i becomes arbitrarily
large?

Of course a positive answer will require serious hypothesis on I and on
the functionals.

In order that the polynomial p(z) exists uniquely for each IE H(Q) it is
necessary and sufficient (as is easily seen) that rxi(l ) # 0, i = 0, ..., d, without
diminishing the generality of Problem 1.1 we may suppose that rx i

( 1) = 1,
i = 0, ..., d. In this condition the polynomial p(z), which we will denote by
L( rx, f, z), may be written in the form

L(rx,f,z)= L rx1fll(Dlif)Q,I(z),
ilii ",d

(2)

where the polynomials QP (which we call basis polynomials for rx) are
defined by the following inductive relation:

If P= (0, ..., 0, 1,0, ...,0) with the "1" at the ith place, then

Qp(z) = Zi - rxo(zJ

(3)

(4)
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If Q'I are constructed for IPI ~k-I and if Iyl =k then we define

y!Q,,(Z)=Zl'- L :x1bl(D"z") Qb(Z),
Ibl ~k I

(5)

where i'! = }'t! ... y,,!. We may verify that the above polynomials satisfy
(as they must by (2))

:x1"I(D"Q,d = 0

=1

if ',' =I fl,

if Y = fl (6)

Note that, in case n = I, the formula (5) is only

k I

k! Qdz) = Zk - L :xi(Dizk ) Qi(Z),
i=O

(7)

DEFINITION 1.2. Let Q be an open subset of iC",:x = (:xo, ... , ad) is called
an interpolation sequence (of length d) if:x i E H'(Q) and :x i

( I) = I for
i = 0, ..., d. We define similarly an infinite interpolation sequence.

The following property follows from the unicity and from (2).

PROPERTY 1.3. The mapf -+ L(:x,f) is a continuous linear projector from
H(Q) onto .9AiC") the space of polynomials of degree ~d.

In particular the fact that the map above is a projector will be often used
in the following manner: two polynomials p(z) and q(z) of degree ~ dare
equal if and only if ai(D'lp ) = :xi(Dflq ) for IPI = i and i = 0, I, ..., d.

PROPERTY 1.4. Let A be an affine map from iC" to iCm, Q open in ic" and
let a = (ao, ..., :x d

) he an interpolation sequence for H(Q) then A * a is an
interpolation sequence for H(A(Q)) and if fE H(A(Q)):

L(:x,foA)=L(A * :x,f)oA.

By definition A * a is (A * :x o, ... , A * ad) and each A * :xi is the image hy
A of the functional ai (i.e., (A * :xi)(f) = ai(foA )).

The usefulness of the above formula is the following: if f =
f k( <¢, Z» djl(¢) then to calculate L(a,f), by continuity we have only to
interpolate the kernel and by Property 1.4 it is only a one dimensional
problem.

Proof of Property 1.4. That A * a is an interpolation sequence for
H(A(Q)) is clear. According to Property 1.3, since the two members of the
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equality to be proved are polynomials of degree ~ d, it is enough to verify
that for IPI=i, i=O, ...,dwe have

(8)

where p(z) = L(A * a, f). The calculations are simple but cumbersome. To
simplify we just do it in the case m = I, which is extensively used in the
sequel. In this case,

where 1 is the linear part of A, (eJ the canonical basis of (:". Then

ai(DP(p 0 A)) = ai(pU) A) l f1l (ed ... l Pn(e,,)

= (A * 1X')(pUI) l f1l (e 1 ) ••• l f1n (e,,)

= (A * 1X')(fU)) l P'(e.) ... l f1n(e ll )

= rx'(DI1(f c A))

= ai(DI1L(a,f cA))

and the formula (8) is proved. I

2. SOME EXAMPLES

Whenever specified, Q is an open subset of (:11.

2.1. Discrete Interpolation

We say that a functional J1. E H'(Q) is discrete if of the form

co

J1.(f) = L bi(DP'f)(x;),
;=0

where (b i ) is a summable complex sequence, i.e., L~o Ibil < 00,

X = {Xi' i = 0, 1, ... } is a relatively compact set in Q and (Pi) is a sequence
of multiindices with bounded length, i.e., max{IPil, i=O, I, ... } < 00. We
say that J1. is normalized if moreover the sum of all the numbers bi such
that Pi = (0, 0, ..., 0) equals l. This only means that J1.( 1) = 1. Thus if ai is a
discrete normalized functional for j = 0, I, ..., d then a = (aD, IX', ..., ad) is an
interpolation sequence for H(Q). Very particulary if ai(f) = f(x i ) then we
obtain the so called Gontcharrof interpolation; see [II, 12, 8]. .
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2.2. Kergin Interpolation

Let X = (xo, x I' ... , Xd) be not necessarily distinct points In an open
convex subset U of C". Define, for f E H( U) and i = 0, ..., d,

where L1 i is the standard simplex in [R',

L1i={(;"),O~;"j~t,j=t, ...,i, t Al~t},
1 ~ I

and ). is the Lebesgue measure on Lr. Then L( 'Y., f) is the so-called Kergin
interpolation polynomial of I It satisfies L('Y., f, xJ = f(x;) for i = 0, ... , d
thus in case n = I it is only the classical Lagrange-Hermite polynomial of
fat the points xo, ..., Xd and the numbers 'Y.i(fUI) are the divided differences
off (multiplied by i!) with respect to the points x o, ..., Xd'

For further information on Kergin interpolation see [1,3-5,17, t8].
Note also that the functionals 'Y.

i above may be extended (and hence
also the Kergin interpolation) to the case where U is only C-convex (an
open set Q E C" is C-convex if for each complex line D, Q 1\ D is simply
connected or empty), this is done by Anderson and Passare; see [I].

2.3. Divided Differences and Other Mean Interpolations

The remark above leads us, see [8], to define a fl-divided difference of
a function f of several variables, with respect to the points x o, ... , X d by
r/(Df'l) with 'Y. i defined by (9) and IPI = i. Now suppose that (xD is a
triangular array of points and that we know all the P-divided difference
of a function with respect to the points x?, ..., x: when IPI = i then the
corresponding interpolating polynomial is of the type we study.

Gelfond first studied this procedure in C, see [It], then Goodman and
Sharma studied it in C"; see [13]. The results we prove below are proved
by them in this case. Some are also first proved by Bloom for Kergin inter­
polation; see [3].

We see that in this case, the numbers a;(f) are only means of the
function f on a simplex in C" with vertices at the points x?, ...,x;. It is
equally natural to consider means on some other simple convex subsets of
C". For example, let us consider a family of spheres. For i = 0, I, ..., d we
take a point Xi in Q and a radius r i such that the euclidean sphere S(x i, rJ
lies in Q. Next we consider the usual normalized area measure (J; on
S(xj,rJ which clearly defines a functional. Then (J=((Jo,(J" ...,(Jd) is an
interpolation sequence for H(Q).
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2.4. The Gelfond Moment Problem in the Complex Domain

For j = 0, 1, ... , d, let }'j be a piecewise regular curve in the complex plane
whose winding number with respect to 0 equals I and let

x

qJj(z)=Z-j-l+ L
m=.i+ I

a} '7
m~

m I

be an holomorphic function in an open neighborhood of }',. We suppose
that Q( c C) contains the curves 'I}, j = 0, 1, ... , d. Gelfond has studied, [II,
p. 88] the following moment interpolation problem: given the numbers
LI(z) qJj(z) dz, construct a polynomial p(z) of degree not greater than d
such that L

J
(f - p)(z) qJj(z) dz = 0 for j = 0, 1, ... , d. This is a one variable

example of our general procedure. Indeed we just have to take
p(z) = L(rx, f, z), where rx = (rxo, rx l

, ... , rx d
),

rxJ(f) = 4- f f(z) t/Jj(z) dz
2m i'l

and

This property is a simple consequence of the following identities:

f I(z) qJj(z) dz = (-I)j J. I(z) t/Jj!)(z) dz = f. I(j)(z) t/Jj(z) dz.
Y} I} 1/

When applied to this case, the convergence theorems proved below lead to
simpler results than those proved in [11].

The discussion above suggests to set a multivariate Gelfond's moment
problem in the following manner.

For j = 0, ..., d we take in Q, Yj = 'Iii X Yj2 x ... X }'}n where each }'jk is as
above and functions

t/J j (z) = L a{ z" I + L a~ z ~
k=O 1'1>1

where a~, ..., a~ are chosen in order to ensure that
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Then the problem is to study the polynomial L(a, f) with a = (cxo, ..., ad) and

For other classical one-dimensional interpolation problems that are of
the type we study, we refer to [7]. See also [9, 10] for multivariate inter­
polation procedures related to those in subsections 2.2 and 2.3.

3. SOME CALCULAnONS IN THE ONE VARIABLE CASE

Let cx = (ad) be an infinite interpolation sequence for H(Q), Q being an
open subset of the complex plane, the dth basis polynomial QAz) for cx is
the one defined by (7), it depends only on ('J.o, ..., ad- I. We note also
Ld(f) = L(cxd, f) where CXd = (cxo, ..., ('J.d) and 9td(f, z) = f(z) - LAz) then:

LEMMA 3.1. For any positive integer d, we have the formula

(10)

LEMMA 3.2. Suppose Q convex, then for dE N, TE N, T~ d we also have

Proofs. In (10) we have QI (z) = z - aO( ~o), which is (4), and we verify
without difficulty that the polynomials defined by the right side of (10)
satisfy the relation (7), hence the formula.

Let us first prove (11) for T= 0 and then use induction. The formula
(11) is true for d = O. Suppose it is true for d - 1 then the right term in (11)
is equal to

which is

that is,

f(z) - LAf, z),



POLYNOMIAL INTERPOLAnON 143

hence the formula is true for d. The general formula follows then by
differentiating under the functionals and the lemma is proved. I

LEMMA 3.3. Suppose there exist positive constants v and r such that for
dE Nand kEN we have lexd(Zk)1 ~ vrk then for Izi ~ p we have

where v = log( (I + v)/v).

Proof By (7) and the hypothesis we get

Fix Izi ~ p then IQd(Z)1 ~ad where (ad) is the sequence defined by ao= 1
and

Next, consider

F(x) = I adxd,
d~O

by the definition of the coefficients ad we find

(I + v) F(x) = exp(px) + vF(x) exp rx,

hence

F(x) = exp px/( 1+ v - v exp rx).

X o = vir is the singularity of F which has the least modulus thus we have

and the lemma is proved. I

LEMMA 3.4. Suppose Q convex d~T and let M(d):=sup{lf(d)(z)l,
zEQ}, then we have

where ii.i is any measure with compact support in Q which extends ex'.

64005i2-3
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Note that since, see (7)
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the estimate (12) gives also an estimate for Q~T)(z).

Proof Indeed, the term in brackets in (11) is bounded, see [11, p.46],
by the term in brackets in (12). Note that the convexity of Q is needed in
the proof of the inequality used. I

4. CONVERGENCE THEOREM FOR ENTIRE FUNCTIONS: FIRST CASE

We note Izi = sup IZil, (a, z> = 1: aizi,

M(j; r)=sup{lf(z)l, Izi :!(r}.

If rJ. = (rJ.d) is an interpolation sequence for H(C n
) we note, as in 3,

Ld(f) = L(rJ.d, f) where rJ.d= (rJ.0 , ... , rJ.d). The basis polynomials are those
defined by (3), (4), (5): a polynomial Q{J depends only on (rJ. 0

, ... , ai I) if
IPI=i.

THEOREM 4.1. Let a be an infinite interpolation sequence for H(C n
) such

that for lal :!( 1, dE N, kEN,

(13 )

If f is an entire function of exponential type < vir where v = log( (1 + v)/v),
then Ld(f) converges to fin H(cn).

Note I. In fact we will prove the theorem with the following weaker
condition on f

lim sup log[M(f, t) exp( - tvlr)] (log t) -1 < 312. (14)

Note 2. Since ai( I) = 1, in (13) we have necessarily v~ I.

Remark 4.2.

- Equation(13) holds, for some v and r, when a=(ad) is an
equicontinuous sequence in H'(Cn

) i.e. when there exist a compact set
K and a positive number c, both independant of d such that ad(f):!(
cmaxzeK If(z)1 for each d.

The theorem is of no interest for Kergin interpolation since it is
known that for any bounded sequence (ad) in c n and any entire function
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f, the Kergin polynomial Kd(z) of f with respect to the points ao, aI, ..., ad
converges to fin H(C") as d approaches 00; see [5].

- We conjecture that for any number w> vir there exists an infinite
interpolation sequence satisfying (13) and an entire function f of exponen­
tial type smaller than w such that LA!) does not converge to.f in H(C").

LEMMA 4.3. Let I be a linear .form on C", Qd be the dth basis polynomial
for I * IX, (eJ the canonical basis of C" then for dEN, z E C" we have

Qd(l(Z»= L IP'(ed···lfin(e,,) Qp(z) (15)
IPI ~d

(Recall that the Qp are the basis polynomials for a).

Proof Since the two sides of (15) are polynomials of degree ~ d,
according to (1.3) it is enough to show that for i = 0, ... , d, I)' I = i,

lXi(D"/(Qdo1» = L lfi'(e,) ... Ifin(e,,) (/(Di'Qp(z».
lfil ~d

This is the same calculation as in the proof of (1.4), so we omit it. I

LEMMA 4.4. With the hypothesis and notations of theorem 4.1, if Izl ~ p,
dE N, IPI = d then

IQp(z)1 ~ C(p, v, r) Gr
Proof Applying lemma 4.3 with I( z) = IJz) = <a, z) we get

QA <a, z» = L: aPQII(z),
IPI ~d

so that by Cauchy inequalities, see, e.g., [15, Thm. 2.2.7],

IQp(z)1 ~sup{IQd( <a, z) )1, lal ~ I}.

(16)

But Qd(Z) is the dth basis polynomial for la * IX and by (13) the hypothesis
of Lemma 3.3 are satisfied, hence

IQA <a, z»1 ~ C(p, r, v) Gf
and the lemma is proved. I
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Proof of Theorem 4.1.

Step I. We write f(z)=Lakzk=L~~(JF,(z), F,(Z)=Llkl~,akzk.

Since f -+ Ld(f) is a continuous linear projector we have

f(z) - Ld(f, z) = L: (F,(z) - LAF" z))
s=d+l

and

Lde,z)= L::xIYI(DYZk)Qy(Z),
1)'1 ,;;d.)',;;k

but for Ikl = s,

Zk = L: al;'I(DYzk) QAz),
Ii'l =.\'. ,'~k

so that finally we have the error formula

In the above formulas }'~k means }'I ~k" ..., y,,~k,,; in the sequel we
will show that when Izi ~ p and for some t; > 0, the modulus of the term
in brackets in (17) is less than or equal to C(p, r, v) S-(I +'l. Since
L S - (I +<) is a convergent series (!) the theorem will be proved.

Step 2. For IPI = i, P~ k, Ikl = s we have

. II' k! .
la'(D z')1 ,,;:. r' 'v.

'"" (k - fJ)!

In fact we have only to prove that for Ibl = d, i EN,

lai(z")1 ~ vrd
,

but for lal ~ I,

vrd
;:::, sup la i

( <a, z>)dl = sup I L: aflai(zfJ)l;:::, lai(zJ)I.
lal ,;; 1 lal ,;; 1 II1I ~ d

(18)

The first inequality above is true by hypothesis and the second by
Cauchy inequalities, hence (18) is proved.

Step 3. Now using (18) and (16) we find that, when Izi ~ p, the term
in brackets in (17) is less than or equal to

S k!. (r)i
C(p,r,v) L: lakl L: L k ,,.'-1 - .

Ikl ~ S i ~ d + 1 1;'1 = I, )',;;; k ( - s) . v
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Since V? 1, v:O::;; 1 so that the above term is still not greater than

r'
C(p,r,v) " lakl-.k!.1... V,I

Ikl ~,I

147

(19)

Now by the growth hypothesis (14) and the Cauchy inequalities, for some
I: > 0 and t large enough we have

t 0/2,) l: (tv)
lakl:O::;; exp - .

t' r

Next we take t = t(s) = srlv in the above estimate and plug it in (19).
If we remark that Llkl = s (k !Is!) =0(1) we may use the Stirling formula

to find that (19) is less than or equal to

C(p,r, v)S-(I+fOl,

so that according to the first step, the theorem is proved. I
If S is a compact convex subset of C", we define

H ..,(O = sup{Re( <~, z»), Z E S}.

COROLLARY 4.5. Let S be a compact convex subset ofcn, IX an interpola­
tion sequence for H(C") such that for a E S, dEN, kEN,

(20)

where r is strictly less than log 2. Suppose that f is an entire function such
that for any e? 0 there exists C(I:) > 0,

If(OI < C(e) exp(Hs(~))+ e I~I) (21)

then LA/) converges to fin H(C").

Remark 4.6.

- If the right side in (20) is replaced more generaly by vrk then the
corollary is true if r is strictly less than log( (1 + v)/v).

- The condition (21) says only thatfis the Fourier-Borel transform
of an analytic functional carried by S.

Proof Choose K an open convex set close enough to S to satisfy for
aEK, d, kEN,

(22)
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where b is still strictly less than log 2. By (21) there exists a bounded
measure with compact support in K, see [19], such that

I(z) = Lexp( <~, z») djJ(~) (ZEC n
). (23)

Now we interpolate the kernel, using Property 1.4. By (22) and
Theorem 4.1 in the one dimensional case the interpolated kernel converges
uniformly in z to the kernel, but a simple look at the constants which
appear in the proof of Theorem 4.1 shows that the convergence is also
uniform for ~ E K. I

EXAMPLE 4.7. With the hypothesis of Theorem 4.1 or Corollary 4.5, if
al/ll(DfJf) = °for IPI = d then 1 must be a polynomial of degree less than d.

Remark 4.8. The constant log 2 is not optimum for GontcharolT inter­
polation but better constants in the one variable case, Ref. [6] will give
better constants in the several variables case via (23).

5. CONVERGENCE THEOREM FOR ENTIRE FUNCTIONS: SECOND CASE

We now use the euclidean norm IIzl1 2 = L Iz;l, define

M(j; r)=sup{l/(z)l, Ilzll =r}

and work with an interpolation sequence a for H(C n
) satisfying the

condition (*) below:

There exist v and for each d a compact set K" such that

la"(/)\ ~ v 1I/IIKd:= v max I/(z}l.
ze Kd

The point is that v does not depend on d; note also that K" is not
unique, we have to choose one (roughly speaking a small one). We suppose
that U,,~o K" is unbounded otherwise we are reduced to the first case. To
measure the unboundedness of the sequence K" we introduce the following
objects:

1. for p ~ 0, Do(p) = sup{ liz - ~oll, Ilzll ~ p, ~o E Ko},

2. for d~ 1, D"=diam(K"uK,, d,
3. for d~ I, r,,= L~~ I D j ,

4. the function N(r), r ~°is defined by

N(r} = k if r k ~ rand r k + I > r.
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Since UKd is unbounded, we have limn ~x Td = 00 so that the function
N is well defined.

In case of Kergin interpolation, see Subsection 2.2, the function N(r) is
the classical counting function of the sequence of interpolation that is N(r)
is the number of nodes in the ball {llzll ~ r}.

Finally note that for the function N the following property always holds:

and (24)

With these notations and definitions we have:

THEOREM 5.1. Let a be an interpolation sequence such that (*) holds.
Let f be an entire function whose grOl~,th satisfies

log M(f, r) ~ AN(Or)

for r large enough and, with °<}. < log( (1 - O)lvO) and 0< 0 < I/(v + 1), v
being the constant that appears in (*). Then Ld(f) converges tofin H(C").

Proof For a fixed p > 0, we are going to show that LA!) converges
uniformly to f on {lIzll ~ p }.

Take r(d) and R(d) two sequences (to be specified later) such that

(HI) R(d»r(d»p

(H2) ad = (aD, ..., ad) is an interpolation sequence for H( {llzll < R( d)} ).

To get (H2) it is enough that the K; of (*) lie in {llzll < R(d)} for
i=O, ..., d.

Recall that the Cauchy representation formula, see [2], gIves for
IIzll ~ r(d):

f(Z)=R(d)(n::l)'f f(O d(J(~),
2n S(R(d)) (R 2(d) - (z, ~»)"

where d(J(~) is the area measure on the sphere S(R(d») = {lizil = R(d)}.
Denoting by gd(U) the function 1/(R2(d) - U)" and using (H2), 1.3, and

1.4 we get

(25)

where 1-[;= (z, ~).
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Now choose '1 such that 8 < IIIJ < 1/0 + v) and 10g«1J - I )/v) > A(this is
possible since 10g((I - O)/vO) > A) and take

R(d) = w(d),

The estimate of Lemma 3.4 may be used to bound the term in brackets in
(25). Taking into account that WI = R(d), we get for I\z\\ ~ p:

n-I!

d" I

II(z) - LAf, z)1 ~ sup{ II(z) - L,,(f, z)l, Ilzll = r(d)}

n(n+ I)· .. (n+d)
~eM(f,R(d») (d+I)!

(R(d) r(d) v)"+ I R(d)21l
x (R2(d)- R(d) r(d))"+"+ I

( V)"~ eMU, R(d» d" I IJ _ I

~ e exp(().N(8w(d))) d" ··1 (_V_)".
IJ-I

We have used that

n(n + I ) ... (n + d)
~--

d+ I!

(26)

and the hypothesis on the growth of f
For d large enough we have 01J(Do(p)+T")<T,, since 81J< I and

limn~x T,,= 00 hence N(8W(d»~d.

Finally, for IIzll ,;:;; p we have

II(z) - LAf, z)1 ~ e exp [(A+ log C, ~ I)) d+ (n - I) log d]

but -log(vl(11- I» ». hence the term in brackets in the formula above
tends to - 00 as d tends to 00 so that L,,(f, z) converges uniformly to Ion
{llzll ~ p} and the theorem is proved. I

EXAMPLE 5.2. Let UEC", with lIull=l, x,,=du, 0:= (<5 xJ. In this case
N(r) = E(r) where E is the integral part of r. If 1 is an entire function
satisfying DP!(du) =0, IPI ~O, and

M(f, R) ~exp(AE(8R»

with 8 and A as in Theorem 5.1 then 1 = O. This result is to be compared
with the one in [14].
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Remark 5.3. Theorem 5.1 may not by improved without diminishing the
generality, indeed the hypothesis on () is optimum in case of GontcharolT
interpolation; see [16].

COROLLARY 5.4 (to the proof). Let f be a non zero entire function of'
order ~jJ.; if the polynomial Ld(f) is zero for each d, then it is necessary that
the function N(r) is of order ~jJ..

Recall that a positive function h defined for r?: 0 is said to be of order
jJ. if h(r) = O(rl'+') for each positive /; but for no negative c; an entire
function f is of order jJ. if the function log M(J, r) is of order jJ..

Proof Without loss of generality we may suppose that f(O) f= O. Fix
R> 0, take dEN such that Td+ I> R?: Td and write the formula (26) taking
R(d)=(v+2)r(d) and r(d)=Do(O)+Td' z=O. This is possible since the
hypothesis (H2) in the proof of Theorem 5.1 still holds here. We get after
some calculations and since LAJ, 0) = 0,

(

I' )d+ 1
If(O)I~CM(J,(v+2)r(d»)dn I 1'+1 '

then

(
V+ I)(d+ 1) log -v- - (n -I) log d~ C + log M(J, (I' + 2) r(d».

For d large enough, that is, for R large enough we will have

d+1 (V+I)-2- log -v- ~ C + log M(J, (v + 2) r(d),

but 3r(d) ~ 3R + 3Do(O) and d + I = N(Td+ 1) > N(R), hence

I (V + I)N(R) "2 log -v- ~ C + log M(J, (v + 2) R).

Since the function on the right side above is of order ~ jJ. it is the same
for N(R). I

COROLLARY 5.5 (to the Proof of 5.1). Let f be an entire function of'
order ~jJ.. Suppose that the function N(R) is of order >jJ.; then there exists
a sequence db kEN such that Ldk(f) converges to fin H(C"). The sequence
d k depends on N, that is on IX but not on f

Proof Since N(R) is of order > jJ., we may find a sequence R k and
jJ.' > jJ. such that limk ~ ex) R k = 00 and N(Rk )?: R{.
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For each k, choose dk EN such that Td, + 1> Rk ~ Td" Hence for each k,

(27)

We are going to show that Ldlf) converges to / in H(C n
).

Fix p > 0, define r(d) = D o( p) + Td and R(d) = (v + 2) r(d) then the
formula (26) gives for \\zl\ ~ p

I/(z) - Ld,(f, z)1 ~ CM(f, R(dd) d%

Now we take IJ." and IJ.'" such that IJ. < IJ." < IJ.'" < IJ.', since / is of order
~IJ.,

On the other hand for k large enough,

(Td,)II'"' ~ (Do(p) + Til.)"",

and then by (27),

so that for Ilzll ~ p,

I/(z) - Ld,(f, z)1 ~ C exp [( v + 2 )1" (dk )1''''/1'' + (n - I)

(V+I)Jx log dk - d k log -v- ,

The corollary is proved since the term inside the brackets in the above
formula tends to - 00 when k tends to 00. I

6. A CONVERGENCE THEOREM FOR FUNCTIONS ANALYTIC IN

A NEIGHBORHOOD OF THE ORIGIN

Let R > 0, IX an interpolation sequence for H( {llzll < R} ), we consider the
following three conditions:

(*) For each dE N there exists Kd such that
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(**) For each c~O, there exists d(c) such that d>d(c) implies
that Kd lies in the euclidean ball with radius c and center the origin.

(***) r.;;~ I Diam(Kdv Kd_ I) < 00.

These conditions are very strong, roughly speaking they mean that
Ld(f) is quite "near" the Taylor polynomials of f

THEOREM 6.1. Let a be an interpolation sequence for H( {lIrll < R}) such
that the conditions (*), (**), (***) hold. Iff is an analytic function in
{llzll < R} then Ld(f) converges to fin H( {lIzll < R}).

Proof of Theorem 6.1. Let 0 < R 1 < R. We must show that LA/) tends
to f uniformly on {izi :s; R I }. To do this, via the Cauchy representation for­
mula, it is enough to prove that Ld(<t'/;, z) converges uniformly for I~I = R 2

and Ilzll :s; R 1 to <t'/;(z) where R 2 is any fixed number between R 1 and R, and
by definition

I
<t'1;(Z) = (R~- <~, z>t <t'«[, z».

To simplify we define for ~ E en,
ad, I; = l~ * ad,

where, as in part 5, l~z)= <z, ~>, Qd./;(Z), the dth basis polynomial for the
interpolation sequence a/;, finally Ld.l;(h) is the dth interpolating poly­
nomial of h for the one dimensional interpolation sequence a/;, Because of
Property 1.4, we have always

(28)

Now, first we fix c > 0 small enough to verify

(29)

and

Second, we fix an integer T large enough to verify

L Diam(Kdv Kd d:S; c
d~ T

(30)

(31 )
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(32)

Step 1. We show that L~n(rt, u) converges to C8ITi(u) uniformly for, ,
WI = R2 and Iul ~ eR2 , By (31) and Lemma 3.4,

(3eR )d-T+I
1'{jT)(u)-LIT!('{j u)1 $..M(d+J)(eR ) 2 (33)

d" ,,,,, 2 (d-T+I)!'

where

M(d+J)(cR )$..SUp{I'{jld+II(U)llul$..cR }=n(n+I)",(n+d)
2 "" , "" 2 (R~-cR2)d+n+I'

hence the left term in (33) is bounded by

C(T,C)n(n+I)",(n+d)( ;eR 2 )d+l,
(d-T+I)! R2 -r.R2

which tends to 0 as d tends to OCJ, r. being well chosen; see (29), The first
step is proved,

Step 2, We prove that L~:J('{j, u) converges uniformly for lui ~
R 1 R 2 , It is enough to show that the series of general term

L IT) (rL" ) L(T)(r,£) )
d+I.~ TiJ,U - d.~ TiJ,U

is uniformly convergent for lui ~ R J R2 . But the above term is also equal to

(34)

For d;::. T, see (*),

and by Lemma 3.4, if lui ~ R 1 R 2 ,

(1') (R 1 R 2 + 2eR 2 )d- 1'+ 1

IQd+I,~(u)l~ (d-T+I)!

By the two estimates above we deduce that (34) is bounded (in absolute
value) by

CiT e) n(n + 1)'" (n + d) (R 1R2+ 2eR2)d+ 1

, (d- T+ I)! R~-eR2' (35)

hence, because of (30), the second step is proved,
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Then, because of the first step we conclude that L~n(u) converges to
"l?(T)(u) uniformly for lui ~ R, R 2 and WI = R 2 .

Step 3. Integrating T times on the segment [0, u] we find that

(36)

converges uniformly for WI = R 2 and lui ~ R, R 2 to

(37)

Differentiating T- I times (36) and (37) and applying then r:t.
T ',~ we get

that

L~:~ ')("l?, 0)

converges to "l?(T-I)(O), uniformly in ~, so that

T- 2 i

" (i) . 0) UL d, ~("l?, u) + 1... L d. ~("l?, iT
;=0

converges to
T- 2 i

"l?(u)+ L "l?(i)(0);.
;=0 I.

Now we do the same with CiC T - 2.~, then r:t. T - J, ~ etc.... Finally we conclude
that L d, ~("l?, u) converges to "l?(u) uniformly for WI = R 2 and lui ~ R l R2 ,

taking u = (z, 0, IIzll ~ R 1 we get that Ld, ~("l?, ("l?, (z, [» converges to
"l?~(z) uniformly for WI = R 2 and IIzll ~ R I . The theorem is proved. I

Of course we may replace the origin by any other point to get a more
general theorem.

EXAMPLE 6.2. If f is a non zero entire function such that for each p,
with Iftl = d,

then the series L;:::, Ilxd + 1- xdll necessarily diverges.
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